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Abstract--The flow of rigid spheres, truncated cones and elastic incompressible spheres in tapered tubes is 
investigated assuming that the Reynolds equation is valid in the fluid and the linear theory of elasticity is 
applicable in the solid. It is shown that leading terms in the asymptotic expansion of pressure drop in terms 
of minimum fluid film thickness for neutrally buoyant rigid spheres and truncated cones are of higher order 
of magnitude compared to the corresponding terms for the flow of these particles in circular cylindrical 
tubes. The effect of taper angle on pressure drop is reduced in the case of soft elastic particles because of 
particle deformations and significant velocities at the particle ~urface. 

1. INTRODUCTION 

In recent years, there have been a number of studies which model the blood flow in capillaries 
(see Goldsmith & Skalak 1975 for references). In these studies the blood cells are represented 
by rigid and deformable particles of various shapes. These studies generally assume steady 
state flow conditions and axisymmetrical configurations of the tubes and the particles. The 
present paper investigates some closely related problems of interest: (i) the flow of neutrally 
buoyant rigid spheres and truncated cones in tapered rubes, and (ii) the flow of elastic 
incompressible spheres in tapered tubes. The flows are unsteady because the geometry 
continually changes, but inertial effects will be neglected. 

The first problem is a typical axisymmetric squeeze film problem which has been subject to 
numerous studies in the lubrication literature (see Desmond 1972). The cases of spherical, 
conical and truncated conical bearings wer~ considered by Archibald (1956). He derived the 
equations giving the load carried by the bearing and settling time in terms of the ~peed of 
descent and some geometrical variables by integrating the Reynolds equation. In the case of 
neutrally buoyant particles treated in the present paper, the condition of zero drag on the 
particle must be satisfied also in addition to Reynolds equation. It can be used to eliminate 
leakback (which is equal to the discharge of the fluid observed relative to a reference frame 
fixed to the particle) leaving only pressure drop as an unknown. Then, integration of Reynolds 
equation yields the relation between the pressure drop, particle velocity and some geometrical 
and material constants. Results are given in section 2 as leading terms of the asymptotic 
expansions in minimum fluid film thickness. 

The second problem considered in this paper is an extension of a recent study by Tbzeren & 
Skalak (1978) on steady motion of elastic incompressible spheres in cylindrical tubes. In the 
present paper, the axisymmetric flow of elastic incompressible spheres in tapered tubes is 
investigated for several constant values of taper angle. The flow is assumed to be maintained by 
applying a constant pressure difference between upstream and downstream ends of the particle. 
The Reynolds equation is assumed to be valid in a thin lubcrication region between the closely 
fitting particle and the tube. The condition of zero drag on the particle is applied including the 
effects of squeezing motion due to relative inward movement of the tube wall. A series 
expansion is used to determine the particle deformations produced by the stresses applied along 
the particle surface using the formulation of Tbzeren & Skalak (1978). The governing equations 
are nondimensionalized by introducing appropriate dimensionless variables and parameters. 
Solutions are obtained for several different values of dimensionless pressure drop and taper 
angle. Integration in time is started at relatively small values of diameter ratio (particle to tube 
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diameter) for which the particle deformations are small compared to fluid film thicknesses and 
velocities at the particle surface are negligible compared to particle velocity. 

Finite difference formulae in time are used to approximate velocities along the particle 
surface. At a given instant, lubrication pressures, particle shape and its surface velocities are 
obtained by applying an iterative numerical procedure described in section 2. Numerical results 
are presented and discussed in section 3. 

2. FORMULATION AND SOLUTIONS 

The axisymmetric squeeze film problems for rigid neutrally buoyant truncated cones and 
spheres are treated first below. These permit asymptotic solutions for the pressure drop which 

drives the flow. Then the problem of the flow of elastic, incompressible spheres in a tapered 
tube is formulated and cast into dimensionless form. This problem is solved by numerical 
procedures outlined below and the results are discussed in section 3. 

Rigid truncated cones 

Consider the axisymmetric motion of a rigid truncated cone in a tapered tube with taper 
angle a (figure 1). The motion of this particle is assumed to be maintained by applying a 
constant pressure difference hp between the upstream and the downstreams ends of the 
particles. Let U denote the particle velocity; h the fluid film thickness; rj and r2 the radii of the 
tube at the upstream and downstream ends respectively. The Reynolds equation in one- 
dimension (i.e. Reynolds equation for infinitely long bearings) can be used here when the film 
thickness is small compared to particle radius. The Reynolds equation, referred to a reference 
frame fixed to the particle, is: 

1 dp 2Q U c o s a  
6/z ds h 3 h 2 [2.11 

where p is the pressure and s is the distance of the point from the upstream end measured 
along the tube wall. The leakback Q is 1/2rrr times the discharge of the fluid observed relative 
to the reference frame fixed to particle and given by: 

2 rrrQ = rrr2 U - 77"rl2 V [2.2] 

where V is the average velocity at the upstream end of the particle (s = 0) and r is the tube 
radius at s (r = r~ -(s ina)s) .  U and V are measured with the tube wall fixed and Q is a function 
of s. 

The zero-drag condition can be derived by considering the equilibrium of a control volume 
including the particle bounded by the tube wall and two planes tangential to the particle at 
downstream and upstream faces: 

f0' f0' 7rr iap l -Trr22p2=-27rcosa  rr ds +27r sin a rpds [2.3] 

where l is the particle length measured parallel to s. The l.h.s, of [2.3] gives the force due to 
pressures acting over the downstream and upstream faces of the control volume. The second 
term of the r.h.s, of [2.3] is the component of pressure resultant on control volume in 
z-direction. The first term of the r.h.s, of [2.3] is the resultant of shear stresses on the tube wall 
in the z-direction. The shear stress r acting along the tube wall can be expressed as 

___ldp h uU cos,~ 
r 2ds ' "  h [2.4] 
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Figure 1. Flow of a neutrally buoyant rigid truncated conical particle through a tapered tube. 
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Equation [2.3] may be simplified by integrating the second term of the r.h.s, of [2.3] by parts: 

fo' r 2 dr = 2 cos ~ rr ds. [2.5] 
1 

Equations [2.1], [2.4] and [2.5] are non-dimensionalized by introducing the following 
dimensionless variables: 

P = p/(tzU[rl), R = r/r1, S = s/rl 

V = V[U, H = h/r1, T = r[(IzU/rl). [2.6] 

Equations [2.1], [2.4] and [2.5] in dimensionless forms are: 

6 (  V) 6 c o s a  
dPds - ~ R - ~ H2 [2.7] 

T 1 d P .  cos a 
= ~ ~--~n - n [2.8] 

f R2 _2dp f L  
31 R ~dR=2cosa J0 R T  dS. [2.9] 

It will be assumed that P, T and V possess the following asymptotic expansions in H as 
H ~ O :  

P = --~(Po + PIH + O(H2)) [2.10] 

= - ~  (To + TIH + O(H2)) [2.11] T 

V =  Vo + V1H + O(H2). [2.12] 

Equations [2.10] and [2.11] follow directly from [2.7] and [2.8]. The power series expansion for 
V will not contain any singular terms in H. Hence it is given as a regular series expansion in 
terms of H in [2.12]. 

Substituting [2.10]-[2.12] into [2.7]-[2.9] and collecting the same order terms in H the 
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differential equations for the zero order terms are obtained: 

dPOds = 6 ( R _  ~o) [2.13] 

f[ 2 2dPo 
R - ~ - d R  =0. [2.141 

Substituting [2.13] into [2.14] and carrying out the integration, Vo is determined in terms of 
geometrical parameters: 

l + R 2  2 
Vo = 2 [2.15] 

Using [2.15] in [2.13] and integrating this ordinary differential equation: 

3 2 
A P0 = - - [ ( R 2  - l )  - (1 + R2 2) In R2] [2.16] 

s in  cr 

where AP0 is the leading term of the asymptotic expansion of dimensionless pressure drop as 
H-~ O. Dimensional equations for Ap and 1? considering only the leading terms: 

~r tiE+r22 U [2.17] 
2rl---- ~ 

Ap -~ ~ [(r2 2 -  rl 2) -(r2 2 + rl 2) In ~ 1. [2.18] 
sm an L r~d 

Rigid spheres 
A similar asymptotic expansion asymptotic expansion as outlined above for cones can be 

developed for the case of rigid spheres (figure 2). The fluid film thickness h measured 
perpendicular to the tube wall and s is the distance of the points on the tube from the point O 
where h attains its minimum value ho. 

The Reynolds equation is 

1 dp_  U r _ V  / h 2 [2.19] 
6/.t ds 

where I7 = mean velocity at s = 0 and ro = tube radius at s = 0. The zero drag condition is given 
by: 

f~i 2 r2-~ss dS = 2 COS a f~i2 rr ds [2.20] 

where r is given by [2.4] and the integration limits Sl and s2 are coordinates of upstream and 
downstream ends of the particle. 

The following dimensionless variables are defined: 

P=p/(tzU/ro), R=r]ro, S=s/a,  V= V/U, 

H = h[ho, T = #OzU/ro) and e = ho/ro. [2.21] 

Equations [2.19], [2.4] and [2.20] in dimensionless form are: 
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Figure 2. Flow of a neutralb buoyant spherical particle through a tapered tube. 

dP = 6 ( a ~  [ ( R -  VIR)/H 3 cos a/H 2] 
d--'S \ro/L ~3 a-f--  J [2.22] 

fs~ R2~--~ dS = 2 c°s a (a)\r0/Js, fs2RT dS [2.23] 

dP 
.,- _ H ~---~ cos a/H 
, - 1 ! 2  [a--- ~ , , [2.24] 

\ro/ 

From [2.22] it can be seen that the significant buildup of pressures takes place in a central 
region in the vicinity of origin for which S = O(1) and H = O(1). The pressure gradient outside 
this region is negligible since H-> 1 when S = O(1). The fluid film thickness h is approximated 
by a second order polynomial in this central region where S = O(1): 

S2 
h = ho + ~a" [2.251 

The effect of replacement of circle by parabola is discussed in detail by Cameron (1966). 
Now assume that P, T and V may be expressed in the form of the following asymptotic 

expansions in ~: 

= ~-~, (Po + Pie + O(~2)) [2.26] P 

T = ~,-~1_ (T0 + TIE +O(~2)) [2.27] 

V= Vo+ V1¢+ O(~ ~) [2.28] 

where n is some integer. 
As • tends to zero, the average velocity at s = 0, I?, must approach to the particle velocity, 

U. Hence Vo in [2.30] must be equal to unity. Under this condition and using [2.25], an analysis 
of [2.22] and [2.23] shows that it is proper to take n equal to 2 in [2.27] and [2.28]. The 
assumption of these specific forms for asymptotic series of P and T will be subject to 
verification in later steps when we attempt to determine the explicit forms of the coefficients of 
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the leading terms, Po and To. The approximation of film thickness by [2.25] is sufficient to 
determine these leading terms exactly (see Cameron 1966). 

The differential equations for the leading terms of pressure are 

dPo . / a ~  f R - ( 1 / R )  V l COSa / 
d S = O ~ o ] ~  ~H-~ RH 3 - ~  j t2.28] 

f~'  R2~--~ ° dS=0 .  [2.29] 

Substitution of dPoldS into [2.29] and use of R = 1 - [(a sin a)lro]S yield: 

f f ( ( ,g  : ,coso   s~ R E dS = s~ 3 sin E a H3 0. [2.30] 
aSo aSo eH 3 - ~  ] d~" = 

In [2.30] terms involving odd powers of S are neglected since their contribution to the integral 
is of smaller order of magnitude than the terms given in the integral. Equation [2.25] in 
dimensionless form is: 

H = 1 + \ro] 2e [2.31] 

o r  

+ {2(H - 1)e'~ 1/2 
S = _ \ - a / 7 o - !  [2.321 

Substituting [2.32] into [2.30] and calculating the integrals of the several terms give: 

f~ ' dS { 2~ ,~,/E f,./,o~l/2.) dH + O(e,/Z ) 
H~ = \a-~o/ .11 V ( H -  1H z) 

Ti" [ a \-(1/2) 
v , +  o(v,)  

1 fs, SZdS 7r ,,,///a~-<'/2'Ve + O(x/e) --gr=4W roJ [2.33] 

fso s' dS 37r i/a \-(3/2) v,+ o(v,). 

Substituting [2.33] into [2.30], 

V, = ( - ~ c o s  a + 2 ( ~ )  sin2 a )  [2.34] 

and substituting Vj in [2.28], using same approximations and integrating between So and SI, 

/ a  \312 
AP = 6X/2 ~" ~,~o) sine ae-'3/E' + °(e-'m')' [2.35] 

The average velocity I7" and pressure drop Ap in terms of dimensional variables are 

9-~ {1 + 7o \ - ~  cos a h ° { 4  + 2 s i n Z a ( ~ ) ) } U  [2.36] 

6X/2cr~U [a \3/2 ~/2 
Ap ~ ~ ~To} ro sin E a. [2.37] 
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This completes the asymptotic analysis for rigid cones and spheres in tapered tubes. 

Elastic incompressible spheres 

Consider the axisymmetric motion of an elastic incompressible particle of initially spherical 
shape through a tapered tube in which the flow is assumed to be maintained by applying a 
constant pressure difference Ap between the upstream and downstream ends of the particle. 
The taper angle a is assumed to be small. The center of the particle translates with a velocity U 
which is a function of time (figure 2). The same notation is used for the variables involving 
geometry and material properties of the fluid as in the case of rigid spheres considered above 
except that the fluid film thickness h is measured along r axis (perpendicular to axis of the tube) 
in the present case. Although the flow is unsteady, it is assumed that the inertial terms are 
negligible and that the Navier-Stokes equations may be reduced to the Stokes equations: 

- Ox--T [2.38] 

where vi is the velocity vector and p is the pressure in the fluid. The equation of continuity 
valid in the fluid is: 

0_~/= 0" dx~ [2.39] 

The Stokes equations [2.38] and equation of continuity [2.39] can be reduced to a Reynolds 
equation under the assumption that the clearance between the particle and the tube is small 
compared to the dimensions of the particle. A cylindrical coordinate system (r, 0, z) which is 
flexed relative to the particle is used to express the field equations in the fluid (figure 2). The 
Reynolds equation is developed by integrating [2.38] and [2.39] under the assumption that p 
does not vary with r: 

dp = ro(zo)Q- V 1 2 2roh - h 2 [2roh - hE] -' 
h'  L 

I, To: 

2roh_ 
x 2ro2-2roh+h241n(l_h)j [2.40] 

The choice of z rather than s as the longitudinal variable is permissible since it is assumed that 
a is a small angle. There are some differences between [2.40] and Reynolds equation developed 
for steady-state conditions (Fitz-Gerald 1969). Firstly, in the present case the pressure p and 
fluid film thickness h are time-dependent variables. Secondly, the leakback Q in [2.40] at any 
instant t is a function of z due to nonuniform tube geometry and the velocities at the particle 
surface. The value of 21rro(zo)Q is the discharge at z observed relative to (r, 0, z) coordinate 
system. The equation of conservation of mass (figure 3) gives 

21rro( zo) Q = 2 7rro( zo) Q( zo) - Lp vini d S  - ~r U ( ro2( Zo) - ro 2) [2.41] 

where Zo is the coordinate of upstream end of the particle, ro is the radius of the tube as a 
function of z, Sp is the surface of the particle, n~ is the unit normal vector on Sp and v~ is the 
velocity on S~. 
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Figure 3. Sketch of velocity distributions along the boundaries of a control volume bounded by the tube 
wall, particle surface and two planes perpendicular to the axis of the tube at Zo and z. 

The condition of zero drag on the particle is: 

fZ zl fZ zl ¢rQg(zo)ro2(Zo)- p(zl)ro2(ZO) = 27r rop tan a d z -  21r roCrzlr=ro dz  
0 0 [2.42] 

where Zo and z~ are the z coordinates of the upstream and the downstream ends of the particle 
or r,~ is the shear stress in the lubrication layer. 

The preceding equations are nondimensionalized by introducing the following dimensionless 
variables and parameters: 

_ D i t r~ h ~-~,  i-= ~=a' /~- 
giG' ro(Zo)' 

r0 ~ ~ ui 
r°=ro(zo)' ~iJ= ' /~= ' t~i=--a 

where G is the shear modulus of the elastic material, and u; is the displacement in the elastic 
particle. A=gUa/Gro2(Zo)=velocity parameter; ,~i=a/ro(O)=initiai diameter ratio; A, = 
a/ro(zo) = diameter ratio obtained using ro(zo); and rather than r0(0); C = 2Q! Uro(zo)= leakback 
parameter. Equations [2.41], [2.40] and [2.42], in terms of these dimensionless variables, are 

C=Co- : f [2.431 

d p _  IC (eo2+ ---: - 8A - 
dz 

-------=-- /1 [h(2~o- h)]- 
2Yo/~-/~ 2 - - , 

2In (l-h)] l 
[2~o ~ - 2to/~ +/~2 + 2~o____h-/~2~ -, 

In ( , - ~ ) J  
[2.44] 

fj•l f~,:l /~(Z,o) - P(zT~)~o2(~) = 2A, tan a ~o/~ d~-2A, ~o'L~ d~. 
o o 

[2.45] 

The equations governing the motion of elastic incompressible particles are (neglecting the 
acceleration terms): 

GV2ul = dP 0u--2 = O. [2.46] 
aXi ' aXi 
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When the surface tractions are specified on the particle surface, the displacements throughout 
the particle can be obtained by using a series expansion in spherical harmonics developed by 
Lamb (1945). The application of this solution to the problem of steady flow of elastic spheres in 
tubes is discussed by Trzeren & Skalak (1978). The same formulation is used in the present 
case also since the inertial terms are assumed to be negligible. 

The governing equations in the fluid and the solid are coupled by the requirements that: (i) 
the stress vector is continuous across the fluid-solid interface and (ii) the fluid film thickness is 
dependent on the deformations of the particle along the surface. 

Numerical solutions of [2.43]-[2.46] are obtained for several values of cone angle a and 
pressure drop A/~ by the numerical procedure described below. 

Suppose that a certain past time instants to, h . . . . .  t.-i the solutions for particle defor- 
mations, the velocity parameter A and the location of the center of the particle are known. If an 
estimate of particle deformations and the parameter A can be found in the current time t~, then 
the location of the center of the particle zn at t. may be estimated: 

ftt 'n z,  = U dt  = a AAu -2 dL  
o 

[2.47] 

The velocity at any point can also be estimated by using finite difference formulae. 

dui / - Au 2 dui 
~i = - ; ' = / U  = 

A d t "  t i l l  
[2.48] 

Then [2.43]-[2.45] are solved to obtain lubrication pressures and shear stresses for the new 
position, particle shape and velocities at time tn. The additional displacements of the particle 
due to the difference of these computed surface stresses from the stresses that give the estimate 
of displacements are found by using the series solution for diplacements. Now A and zn are 
held fixed and the approximation to surface displacements and velocities are updated by using 
the previous estimates and additional displacements. This iterative cycle is repeated until the 
additional displacements become sufficiently small compared to the magnitude of the current 
approximation to displacements. 

Further iterations on A are required if the integral of Reynolds equation [2.44] between g0 
and ;~ is not equal to the specified value of pressure drop Ap. No more than three iterations on 
A and fifteen for displacements are needed to obtain three significant figures in these variables. 

The integration in time is started at small values of Ai for which the minimum film 
thickness is much larger than the particle deformations and surface velocities of the particle are 
negligible compared to U tan a. After calculating the solutions for a few initial time steps, a 
backward difference formula is used to approximate the surface velocities at current step. 

The computations have been carried out for a range of initial diameter ratios 0.90 < Ai < 1.05 
in which the equations of linear elasticity and the Reynolds equations may be expected to be 
reasonable approximations. 

3. NUMERICAL RESULTS AND DISCUSSION 

The solutions for rigid particles and numerical results obtained for elastic spheres are 
discussed below. 

Truncated cones 

The solution given in section 2 is valid for an arbitrary conical angle a provided the gap 
thickness h is small. The squeeze film effect that results can be seen simply as follows. The 
relation between particle velocity U and the mean velocity I? at the upstream end of the 
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particle is given by [2.17]. Considering only the first term in the expansion in h we have 

U rl 2 + r2 2 
2 r12 ~ O(h). [3.1] 

Using the continuity equation 7rrj2V = ~rr2V, the mean velocity V at any position s is: 

U rl 2 + r2 2 
V -  2 r 2 ~ O(h). [3.2] 

Equation [3.2] shows that V < U at the upstream end r = rl but V > U when r = rE at the 
downstream end of the particle. This shows that the fluid escapes from both ends due to 
squeezing effects. It is of interest to express [3.2] in terms of the leakback Q measured relative 
to axes fixed to the particle: 

27rrQ 7rr2(U- V) = ~rU (r 2 r'22 r22 ) = - . [3.3] 

If one substitutes r = rl or r = r2 in [3.3] the same absolute value of the discharge 2~-rQ results 
but with opposite signs. This shows that equal amounts of fluid leave the gap at the two ends of 
the particle. Moreover, [3.3] shows that Q = 0 at r = [(r12 + r22)/2] 1/2. 

While there is no restriction on the magnitude of ~ in the solutions for rigid truncated cones 
obtained in section 2, it is of interest to consider small a for which these solutions reduce to 

27rrl QI = - 2zrr2Q2 = zrLrl Us + 0(~ 2) [3.4] 

where L is the length of the particle and 

2 b t U . 3  . 2 
A p =  r - - ~ L  s in  a+O(h-2). [3.51 

For fixed h, as c~-~0 the terms of O(h -3) and O(h -2) in the asymptotic expansion of Ap 
approach zero and the terms of O(h -~) become predominant in this expansion. These terms of 
O(h -I) cannot be determined accurately by using the one-dimensional Reynolds equation. 
However, as a ~ 0  for h fixed, it is reasonable to assume that the results will approach the 
solutions for the flow of circular cylinders in cylindrical tubes for which the leading term in the 
asymptotic expansion of Ap is 21~Ulh (see Chen & Skalak 1970). 

Rigid spheres 
For the rigid spheres, the effects of squeezing motion can be illustrated most clearly by 

comparing pressure curves for different cone angles, c~. Figure 4 shows the pressure vs axial 
coordinate curves for c~ = 0, 1, 2 and 3 °. Equations [2.43]-[2.45] (the equations developed to 
treat the elastic particle problem) are numerically integrated for the spherical shape to obtain 
these curves. For all these curves Ai is equal to 0.99. The pressure for steady-state problem 
(a = 0) is symmetric with respect to origin. For a ~ 0, there is a significant increase of pressures 
in the vicinity of origin and curves become more asymmetric with increasing ~. These trends 
may be readily explained by considering the axisymmetrical squeeze film problem involving a 
stationary rigid sphere in a cylifidrical tube in which the tube walls are assumed to have a radial 
velocity U sin a. The integration of Reynolds equation in one-dimension [2.19], using Q = 0 at 
h = ho and p = 0 at the upstream end of the particle yields: 

6~a U sin a 
Pmax ~ ~o 2 at h = ho. [3.6] 
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Figure 4. Comparison of pressure curves for a = 0, 1, 2 and 3 °. The particle in each case is a rigid neutrally 
buoyant sphere. 

This term approximates the effects of squeezing motion on the pressures for the case of a 
tapered tube with taper angle c~. The integration of the Reynolds equation for a neutrally 
buoyant sphere translating in a straight tube (a = 0) yields: 

3X/(3)/xaU 4 
Pmax ~ 4X/(2)Rol12ho312 at h = ~h0 [3.7] 

where we have used Q = z Uho. For small ho, with a small but nonzero, the term given by [3.6] 
becomes predominant with respect to [3.7]. As a increases the location of maximum pressure 
moves towards the origin where terms due to squeezing motion attain their maximum. 

For the flow of neutrally buoyant rigid spheres in cylindrical tubes, V and Ap are given by 
(Bungay & Brenner 1973): 

4 h0 
V = U (1-  ~ -~oo) + O( ho 2) 

4V'(2) 1r/z U , 
ap = ~ ~ ~- O(1). 

[3.8] 

[3.9] 

The terms in the asymptotic expansion of Ap due to the squeezing motion have a significant 
contribution to pressure drop as can be seen by comparing [2.37] with [3.9]. For a fixed a 
(however small), the ratio of pressure drops for the case of straight tube to that for the tapered 
tube approaches zero as ho~0. There is also a range of a and ho for which terms of O(otEho -3t2) 
and O(ho -112) have the same order of magnitude. 

The Reynolds equation in one-dimension used in this analysis does not accurately determine 
the terms of O(ho-112). The Reynolds equation developed for axisymmetric problems [2.44], 
[2.43] and [2.45] are numerically integrated to investigate this range of ho and a. The results are 
shown in figure 5. The solid lines in this figure give Ap'= Ap/(16l~Va/ro 2) vs ;~i curves for 
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Figure 5. Dimensionless pressure drop Ap' vs initial diameter ratio Ai for several values of taper angle a. 
The solid lines are obtained by numerically integrating the Reynolds equation. The broken lines and points 
indicated by small circles are obtained by adding Ap' calculated numerically for a = 0 and Ap' obtained 

using [2.9]. The particles are neutrally buoyant rigid spheres. 

a = 0,1, 2 and 3 ° computed by numerical integration. Also shown are Ap' = Ap/(16tt Va/ro 2) vs /~ i  

curves (indicated by small circles and broken lines) obtained by adding Ap' for a = 0 obtained 
numerically to Ap' computed using [2.37]. There is a very good correlation between these 
curves as can be seen from this figure. It follows that Ap computed by adding the results of 
[3.9] and [2.37] may be used as an acceptable approximation for small a and when O(a2ho -312) 
and O(ho -t/2) terms in the asymptotic expansion of Ap are of the same order of magnitude. 

Elastic incompressible spheres 
The results for elastic incompressible spheres are obtained by applying the numerical 

procedure described in section 2 for several different values of Ap and a. Equations [2.43]-[2A6] 
are solved to determine A, C, t~i and ~i. These results are obtained for the range 0.9 < Ai < 1.05 
by incrementing the dimensionless time. When Ap,/~ and G are specified, these nondimensional 
results can be used to determine the dimensional variables as functions of time by using the 
definitions of dimensionless variables given in section 2. 

In discussing the numerical results, the shapes of deformed particles and pressure curves 
will be illustrated first. In figure 6 the pressure is shown as a function of ~ for A/~ = 0.1, 
Ai = 1.04 and a = 0, 1 and 3 °. This fairly high value of A/~ implies that either G is small (soft 
particle) or Ap is large. The minimum and maximum pressures tend to increase slightly with 
increasing a;  otherwise, the curves are similar and close to each other. The behavior of these 
curves is in contrast with the pressure curves for rigid particles shown in figure 4. For rigid 
spheres with A~ = 0.99 the maximum pressure increases by a factor of about four as a varies 
between 0 and 3 °. The dependence of pressure curves on a is weaker in the case of a soft 
particle because of significant particle deformations and velocities at the surface of the particle. 
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Figure 6. Pressure curves for ,~i = 1.04, A p  = 0.01 and a = 0,  1 a n d  3 °. The particle is an elastic in- 
compressible sphere. 

For stiffer particles or lower values of Ap, the behavior of pressure curves is closer to that of 
rigid spheres shown in figure 4. 

Figure 7 shows the gap thicknesses and particle deformations for the same values of Ai, A# 
and a used for figure 6. The g axis may be regarded as the location of the tube wall in figure 7 
to interpret the gap thickness curves h'= hla and the curves for original particle shapes. The 
minimum gap thickness increases with increasing a. In the rest of the lubrication region h' 
curves for different a values are very close to each other and show little variation with respect 
to ~. The locations of minimum fluid film thickness and maximum deformation move towards 
the downstream end of the particle as a increases. 

When h is small compared to the elastic displacements, the pressures cannot vary 
significantly with a from considerations involving elasticity of the particle alone. This partly 

0.04 

h' O0 

0.0, 

0.08 

•ORIGINAL SHAPES / a  = 3 ° 

o.o 

Figure 7. The original and deformed particle shapes for ,~i = 1.04, A #  = 0 .01,  ~ = 0 ,  1 a n d  3 °. The particle is 
an elastic incompressible sphere. 
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explains the difference between the pressure curves for rigid spheres (figure 4) and elastic 
spheres (figure 6). For elastic particles the values of  the velocities along the particle surface are 
comparable to U tan a. This is another reason that the effect of  ~ is less for soft particles 
compared to rigid spheres. The magnitude of pressures is further reduced by the increase of 
film thickness for soft particles as a increases as can be seen from figure 8. 

Figures 8(a)-(c) give the final diameter ratio A s (ratio of  the initial particle radius to the 
maximum radius of the deformed particle) as a function of Ai for several constant values of a/~ 
and a = 0, 1 and 3 °. The value of A s is Af = (1 - h~) where h6 = holro(O) and ho is the minimum 
gap thickness. The h~ is given by the difference between the line A s = 1 and A I curve for each 
A/~. The difference between 45 ° line and Af curves gives approximately the deformation that 
takes place at the point where minimum film thickness occurs. Comparison of A s curves for 
a = 0, 1 and 3 ° shows that minimum fluid film thickness increases as a increases. This is due to 
increase of pressures caused by squeezing effects. 

,,-- •--A~ : 0.025 
1.o r - -  ~ - ~ ' ~  - , _o.o  

a=O -0.1 
kf I 

0.2 

0.95! ~ /  ---0.4 

0.90 
0.90 0.95 X i l.O0 1,04 

Figure 8(a). 
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i 

0.90 0.95 1.00 
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0.05 
. . . . .  0.1 

0.2 

----0.4 

1.04 

Figure 8(b). 
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Figure 8(c). 
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Figure 8. Each set of curves shows final diameter ratios ,~f vs the initial diameter ratios Ai for elastic, 
incompressible spheres. (a) a = 0 (straight tube, steady flow), (b) a = 1 °, (c) a = 3 °. 

Figures 9(a) and 9(b) give the ratio of maximum radial velocity v at the particle surface to 
radial velocity of tube wall (U tan a) as a function of Ai and A/~ for a = 1 and 3 °. The absolute 
value of v, for fixed/~ and G, decreases as Ap and/or a decreases. However, the dimensionless 
velocity v/(U tan a) vs A; curves for different Ap cross each other. For smaller values of ai, the 
lubrication pressures are more or less independent of G but vary with Ap. The radial velocity v 
is inversely proportional to G. So (v/Utan a) varies with A/~. For higher values of Ai, the 
relative positions of the curves change (figures 9a, b). For stiffer particles the gap width is much 
smaller compared to softer particles as can be seen from figure 8(a)-(c). In the limit of very 
small gap thickness, the radial velocity v much approach U tan a. Accordingly the value of 
v[(U tan a) becomes greater for smaller values of Ap which results in smaller gap thicknesses. 

For a fixed A/~, the curves v/(U tan a) vs A~ for a = 1 ° compared to a = 3 ° exhibit a similar 
behavior. Figures 8(a) and 8(b) show that the minimum gap width is smaller for smaller a when 
A/~ is fixed, thus leading to higher values of relative velocity v[(U tan a) as can be seen by 

comparing Ap = 0.025, a = 1 and 3 ° curves in figures 9(a) and (b). 
The dimensionless pressure drop Ap' = Ap/(16#Va/ro 2) vs initial diameter ratio A~ curves for 

a = 0, 1 and 3 ° are shown in figure 10. The differences between Ap' curves for different values 
of a at fixed A/~ are small for large A/~. These differences are greatest for rigid spheres. The 
behavior of these curves can be understood by comparing the curves for rigid and soft elastic 
spheres. For rigid spheres there is no velocity at the particle surface and the terms due to 
squeezing motion in the asymptotic expansion for Ap' [2.9] become increasingly important as a 
increases. For the case of soft elastic particles the time derivative of h is much smaller than 
U tan a (see figures 9a and b). The pressure drop is further reduced by an increase of h for 
increasing a. Therefore, the differences between Ap' curves for different a values are small for 
soft elastic particles. The majority of curves lie between these two extreme cases. 

Figure 11 shows the dimensionless velocity U'= U/(aAp/#) vs Ai curves for several values 
of A/~ and a. All the curves for different A/~ values approach each other as Ai decreases (when 
the deformations are small compared to gap thicknesses). There is a considerable decrease of 
particle velocity as it translates in the direction of decreasing tube radius for all A/~ and a. The 
effect of a is more significant for rigid spheres. For example, a comparison of the values of U' 
for A; = 0.995, a = 0 and 3 ° shows that rigid spheres translate twice faster in straight tubes than 
tapered tubes with taper angle a = 3 ° for A~ = 0.995. This difference in velocities (for fixed A~) is 
much reduced for softer elastic particles (i.e. for Ap large). 

The successive approximation procedure described in section 2 is not convergent when hfi is 
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Figure 9(a). 
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Figure 9. The dimensionless maximum surface velocity of the particle (v/U tan a) as a function of ,~i and 
Ap.  (a)  ~ = 1 °, (b)  a = 3 °. 

less than 0.005 (or A I > 0.995). It was therefore not possible to investigate numerically the 
limiting situations involving very small particle velocities. The contact theory of elasticity has 
been successfully applied in lubrication literature (see Desmond 1972) in these limiting cases for 
which (i) U is small, (ii) a is slightly greater than to, and (iii) deformations are much larger 
compared to the thickness of the lubrication film. Application of contact theory of elasticity to 
axisymmetric particle flows to develop analytical relations between Ap, U and some material 
and geometrical variables will be the subject of a future publication. 
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